The Power and Weakness of Randomness

(when you are short on time)

Avi Wigderson
School of Mathematics
Institute for Advanced Study

Plan of the talk

-Computational complexity
-- efficient algorithms, hard and easy problems
-The power of randomness
-- in saving time
-The weakness of randomness
-- what is randomness?
-- the hardness vs. randomness paradigm
-The power of randomness
-- in saving space
-- in distributed computing
-- to strengthen proofs

Easy and Hard Problems a technology independent definition

Multiplication

mult $(23,67)=1541$
grade school algorithm: best known algorithm: n^{2} steps on n digit inputs $\exp (\sqrt{ } n)$ steps on n digits

EASY

Factoring
factor $(1541)=(23,67)$

HARD?
-- we don't know!
-- the whole world thinks so!

Map Coloring

and P vs.

NP

Input: planar map M
(with n countries)
2-COL: is M 2-colorable? Easy
3-COL: is M 3-colorable? Hard?
4-COL: is M 4-colorable? Trivial
Theorem: If 3-COL is Easy

then Factoring is Easy
P vs. NP problem: Formal: Is 3-COL Easy?
Informal: Can creativity be automated?

Fundamental question \#1

Is NP $\neq P$? More generally,
is any "natural" problem "hard"? E.g.

- Factoring
- 3-coloring
- Permanent
- Optimal Chess / Go strategies

Does NP (or even \#P, or even PSPACE) require Exponential time/size?

Public opinion:yES!

The Power of Randomness

Host of problems for which:

We have probabilistic polynomial time algorithms

We have no deterministic algorithms of subexponential time.

Coin Flips and Errors

Algorithms will make decisions using coin flips 0111011000010001110101010111...
(flips are independent and unbiased)
When using coin flips, we'll guarantee:
"task will be achieved, with probability >99\%"

- We tolerate uncertainty in life
- Here we can reduce error arbitrarily <exp(-n)
- To compensate - we can do much more...

Number Theory: Primes

Problem 1: Given $x \in\left[2^{n}, 2^{n+1}\right]$, Is x prime?

NEW: Deterministic primality testing algorithm.

Problem 2: Given n, find a prime in $\left[2^{n}, 2^{n+1}\right]$

Algorithm: Pick at random $x_{1}, x_{2}, \ldots, x_{100 n}$ For each x_{i} apply primality test. $\operatorname{Pr}\left[\exists i x_{i}\right.$ prime] > . 99

Algebra: Polynomial Identities

Is $\operatorname{det}\left(V\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)-\Pi_{i k k}\left(x_{i}-x_{k}\right) \equiv 0$?
Theorem [Vandermonde]: YES
Given (implicitly, e.g. as a formula) a polynomial p of degree d. Is $p\left(x_{1}, x_{2}, \ldots, x_{n}\right) \equiv 0$?

Algorithm: Pick r_{i} indep at random from $\{1,2, \ldots, 100 \mathrm{~d}\}$
$p \equiv 0 \Rightarrow \operatorname{Pr}\left[p\left(r_{1}, r_{2}, \ldots, r_{n}\right)=0\right]=1$
$p \neq 0 \Rightarrow \operatorname{Pr}\left[p\left(r_{1}, r_{2}, \ldots, r_{n}\right) \neq 0\right]>.99$
Comments: Over small finite fields it is coNP-complete
Over large finite fields one can even factor p

Analysis: Fourier coefficients

Given (implicitely) a function $f:\left(Z_{2}\right)^{n} \rightarrow\{-1,1\}$ (e.g. as a formula), and $\varepsilon>0$, Find all χ such that $|\langle f, \chi\rangle| \geq \varepsilon$
Comment : At most $1 / \varepsilon^{2}$ such χ
Algorithm: ...adaptive sampling... Pr[success]> . 99 Comment: Works for other Abelian groups. Applications: Coding Theory, Complexity Theory

Geometry: Estimating Volumes

Given (implicitly) a convex body K in R^{d} (d large!)
(e.g. by a set of linear inequalities)

Estimate volume (K)
Comment: Computing volume(K) exactly is \#P-complete

Algorithm:

Approx counting \approx random sampling Random walk inside K. Rapidly mixing Markov chain. Analysis:
Spectral gap \approx isoperimetric inequality Applications:
Statistical Mechanics, Group Theory

Fundamental question \#2

Does randomness help?
Are there problems with probabilistic polytime algorithm but no deterministic one?

Fundamental question \#1

Does NP require exponential time/size?
Public opinion:
The public is WRONG on at least one question!

Hardness vs. Randomness

Theorem:

If there are natural hard problems
(e.g. NP requires exponential size)

Then randomness does not save time (BPP=P)

Computational Pseudo-Randomness

eeceee pseudorandom if
for every efficient algorithm, for every input,
deterministic
,

Hardness \Rightarrow Pseudorandomness

$k \sim c \log n$

Want $G:\{0,1\}^{k} \rightarrow:\{0,1\}^{n}$

We do $G:\{0,1\}^{k} \rightarrow:\{0,1\}^{k+1}$
Need: $\operatorname{Pr}[C(x)=f(x)]<1 / 2+\exp (-k) \quad$ Average-case for every computation C, size $(C)<s$ hardness

Hardness amplification

Have: $\operatorname{Pr}\left[C^{\prime}(x)=f^{\prime}(x)\right]<1$
for every computation C^{\prime}, size $\left(C^{\prime}\right)<s^{\prime}$

Worst-case hardness

The Power of Randomness

In other settings...

Getting out of mazes (when your memory is weak)

n-intersection maze
Only a local view
Theorem: A random walk will visit every intersection in n^{2} steps (with probability >99\%)

Crete, ~1000 BC

Decreasing Congestion in Networks

N nodes
N/2 pairs

Theorem 1: There is a choice of pairs $\left(A_{i}, B_{i}\right)$ that will make a congestion of size $\sqrt{ } \mathrm{N}$ at some node

Decreasing Congestion in Networks

Theorem 2: If every pair $\left(A_{i}, B_{i}\right)$ chooses a random intermediate point C_{i}, congestion drops to $\log N$ in all nodes (with probability 99\%).

What is a Proof System?

Is a mathematical statement claim true? E.g.
claim: "No integers $x, y, z, n>2$ satisfy $x^{n}+y^{n}=z^{n} "$ claim: "The map of Africa is 3 -colorable"
probabilistic
An efficient Verifier V(claim, argument) satisfies:
*) If claim is true then V (claim, argument) = TRUE
for some argument always
(in which case claim=theorem, argument=proof)
**) If claim is false then V(claim, argument) = FALSE for every argument with probability > 99\%

Remarkable properties of Probabilistic Proof Systems

claim: The Riemann Hypothesis
Prover: (argument)
: (editor/referee/amateur)

Probabilistically Checkable Proofs

 's concern: Is the argument correct? PCPs - refereeing (even by amateurs) in a jiffy! Major application - approximation algorithms
Remarkable properties of Probabilistic Proof Systems

claim: The Riemann Hypothesis
Prover: (argument)
: (editor/referee/amateur)

Zero-Knowledge Proofs
's concern: Will Verifier publish first?
ZK-proofs: argument reveals only correctness!
Major application - cryptography
Assumes: Factoring is HARD

Conclusions \& Problems

When resources are limited, basic notions get new meanings (randomness, learning, knowledge, proof, ...).

Randomness is in the eye of the beholder. Hardness can generate (good enough) randomness. Probabilistic algs seem very powerful but probably are not. Sometimes this can be proven! (Small space algs,Primality) Randomness is essential in some settings.

Is Factoring HARD? Is electronic commerce secure?
Is 3-COLOR HARD? Is $\mathrm{P} \neq \mathrm{N} P$? Can creativity be automated?

Fast Information Acquisition

Population: 250 million, voting black or red

Sample: 3,000

Theorem: With probability $>99 \%$
$\%$ in population $=\%$ in sample $\pm 5 \%$
inependent of population size

