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Plan of the talk
•Computational complexity

-- efficient algorithms, hard and easy problems
•The power of randomness

-- in saving time
•The weakness of randomness

-- what is randomness ?
-- the hardness vs. randomness paradigm

•The power of randomness
-- in saving space
-- in distributed computing
-- to strengthen proofs



Easy and Hard Problems
a technology independent definition

Multiplication
mult(23,67) = 1541

grade school algorithm:
n2 steps on n digit inputs

EASY

Factoring
factor(1541) = (23,67)

best known algorithm:
exp(√n) steps on n digits

HARD?
-- we don’t know!
-- the whole world thinks so!

Presenter Notes
Presentation Notes
Factoring – the world BETs it is hardWe will later assume it.



Map Coloring and P vs. NP
Input: planar map M
(with n countries)

2-COL: is M 2-colorable?

4-COL: is M 4-colorable?

Easy
Hard?3-COL: is M 3-colorable?
Trivial

Theorem: If    3-COL is Easy
then  Factoring is Easy

P vs. NP problem: Formal: Is 3-COL Easy?
Informal: Can creativity be automated?

Presenter Notes
Presentation Notes
A map can be represented digitallyN countries roughly means n digitsP vs NP – most important problemWe don’t know how to prove hardness!



Fundamental question #1

Is NP≠P ? More generally,
is any “natural” problem “hard”? E.g.  
- Factoring
- 3-coloring
- Permanent
- Optimal Chess / Go strategies
Does NP (or even #P, or even PSPACE)
require Exponential time/size ?

Public opinion:YES!

Presenter Notes
Presentation Notes
Major assumption about independence and unbiasedIn det algs correctness is guaranteed – here it is not.There can be error – we can be unluckyWhat is the rationale for tolerating error?99.999..%Input errors, programming errors, hardward failures, gamma  radiation…



The Power of Randomness

Host of problems for which:

We have probabilistic polynomial time 
algorithms

We have no deterministic algorithms of 
subexponential time.



Coin Flips and Errors
Algorithms will make decisions using coin flips

0111011000010001110101010111…
(flips are independent and unbiased)
When using coin flips, we’ll guarantee:
“task will be achieved, with probability >99%”

• We tolerate uncertainty in life
• Here we can reduce error arbitrarily <exp(-n)
• To compensate – we can do much more…

Presenter Notes
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Major assumption about independence and unbiasedIn det algs correctness is guaranteed – here it is not.There can be error – we can be unluckyWhat is the rationale for tolerating error?99.999..%Input errors, programming errors, hardward failures, gamma  radiation…



Number Theory: Primes

Problem 1: Given x∈[2n, 2n+1], Is x prime?

NEW: Deterministic primality testing algorithm.

Problem 2: Given n, find a prime in [2n, 2n+1]

Algorithm: Pick at random x1, x2,…, x100n
For each xi apply primality test.
Pr [ ∃i xi prime] > .99

Presenter Notes
Presentation Notes
Major assumption about independence and unbiasedIn det algs correctness is guaranteed – here it is not.There can be error – we can be unluckyWhat is the rationale for tolerating error?99.999..%Input errors, programming errors, hardward failures, gamma  radiation…



Algebra: Polynomial Identities
Is  det(V(x1, x2,…, xn))- Πi<k (xi - xk) ≡ 0 ?
Theorem [Vandermonde]: YES

Given (implicitly, e.g. as a formula) a polynomial p of 
degree d.     Is p(x1, x2,…, xn) ≡ 0 ?

Algorithm: Pick ri indep at random from {1,2,…,100d}
p ≡ 0   ⇒ Pr[ p(r1, r2,…, rn) =0 ] =1
p ≠ 0   ⇒ Pr[ p(r1, r2,…, rn) ≠ 0 ] > .99

Comments: Over small finite fields it is coNP-complete
Over large finite fields one can even factor p

Presenter Notes
Presentation Notes
Major assumption about independence and unbiasedIn det algs correctness is guaranteed – here it is not.There can be error – we can be unluckyWhat is the rationale for tolerating error?99.999..%Input errors, programming errors, hardward failures, gamma  radiation…



Analysis: Fourier coefficients

Given (implicitely) a function f:(Z2)n → {-1,1}
(e.g. as a formula), and ε>0,
Find all χ such that |<f, χ>|≥ ε
Comment : At most 1/ε2 such χ

Algorithm: …adaptive sampling… Pr[ success ] > .99
Comment: Works for other Abelian groups.
Applications: Coding Theory, Complexity Theory

Presenter Notes
Presentation Notes
Major assumption about independence and unbiasedIn det algs correctness is guaranteed – here it is not.There can be error – we can be unluckyWhat is the rationale for tolerating error?99.999..%Input errors, programming errors, hardward failures, gamma  radiation…



Geometry: Estimating Volumes

Algorithm:
Approx counting ≈ random sampling
Random walk inside K.
Rapidly mixing Markov chain.

Analysis:
Spectral gap ≈ isoperimetric inequality

Applications:
Statistical Mechanics, Group Theory

Given (implicitly) a convex body K in Rd  (d large!)
(e.g. by a set of linear inequalities)
Estimate  volume (K)
Comment: Computing volume(K) exactly is #P-complete



Fundamental question #2
Does randomness help?
Are there problems with probabilistic polytime 
algorithm but no deterministic one ?

Public opinion: YES!

The public is WRONG on at least one question!

Fundamental question #1
Does NP require exponential time/size ?

Presenter Notes
Presentation Notes
Major assumption about independence and unbiasedIn det algs correctness is guaranteed – here it is not.There can be error – we can be unluckyWhat is the rationale for tolerating error?99.999..%Input errors, programming errors, hardward failures, gamma  radiation…



Hardness vs. Randomness
Theorem:

If there are natural hard problems
(e.g. NP requires exponential size)

Then randomness does not save time
(BPP=P)

Presenter Notes
Presentation Notes
Major assumption about independence and unbiasedIn det algs correctness is guaranteed – here it is not.There can be error – we can be unluckyWhat is the rationale for tolerating error?99.999..%Input errors, programming errors, hardward failures, gamma  radiation…



Computational Pseudo-Randomness

pseudorandom if
for every efficient algorithm,
for every input,

output output≈

none

efficient
deterministic pseudo-

random
generator

algorithm
input

output

many
unbiased
independent

n

algorithm
input

output

many
biased

dependent

n

fewk ~ c log n

Presenter Notes
Presentation Notes
Randomness in the eye of the beholderPragmatic definitionOutputs equal up to 1% (doesn’t matter as we had correctness 99%)Coarsening of L1 metric – efficient tests



Hardness ⇒ Pseudorandomness

k

k+1

f

Need: Pr[ C(x) = f(x) ] < 1/2 + exp(-k) Average-case
for every computation C, size(C) < s hardness

k ~ c log n

Want   G : {0,1}k → :{0,1}n

We do  G : {0,1}k → :{0,1}k+1

Have: Pr[ C’(x) = f’(x) ] < 1 Worst-case
for every computation C’, size(C’) < s’ hardness

Hardness amplification



The Power of Randomness

In other settings…



Getting out of mazes 
(when your memory is weak)

Theseus

Ariadne

Crete, ~1000 BC

Theorem: A random walk will 
visit every intersection in n2

steps (with probability >99% )

Only a local view

n–intersection maze

Presenter Notes
Presentation Notes
Having a string amounts to remembering where you’ve been.You have only a local view of each intersectionIn some models –det is impossible. (keep going right does not work)In others we don’t know



Decreasing Congestion in Networks

Theorem 1: There is a choice of pairs (Ai,Bi)
that will make a congestion of size √N at some 
node

N nodes
N/2 pairs

A1 B1

B2

A2 Fixed routes

Presenter Notes
Presentation Notes
Internet messages/files, telephone networks,…How long will the slowest pair have to wait?



Decreasing Congestion in Networks

A1 B1

B2

A2 C1

C2

Theorem 2: If every pair (Ai,Bi) chooses a random
intermediate point Ci, congestion drops to log N
in  all nodes (with probability 99%).

N nodes
N/2 pairs

Fixed routes
Random midpoints



What is a Proof System?
Is a mathematical statement claim true? E.g.
claim:  “No integers x, y, z, n>2 satisfy xn +yn = zn “

claim:  “The map of Africa is 3-colorable”

An efficient Verifier V(claim, argument) satisfies:

*) If claim is true then V(claim, argument) = TRUE
for some argument
(in which case claim=theorem, argument=proof)

**) If claim is false then V(claim, argument) = FALSE
for every argument

probabilistic

with probability > 99%

always

Prover

Presenter Notes
Presentation Notes
V is called a proof system, or verifierV is efficient – goes without saying! All logical systems conform. Removes Goedel issuesWho generates the proof? An ingenious prover.Is it easier to generate the proof than verifying it? P vs NPGestalt is not allowed – only simple, local, self-evident deductionsCompleteness: true claims have proofsSoundness:  false claims have no proofsWe mathematicians have 2 hats – provers and verifiersThere are MANY proof systemsConcerns of the Prover and VerifierMore theorems can be proved in the prob versionRandomness to Prover, and InteractionNotion of truth changes – we allow errors (like in computation)



Remarkable properties of 
Probabilistic Proof Systems

claim:  The Riemann Hypothesis
Prover:  (argument)
Verifier: (editor/referee/amateur)

Probabilistically Checkable Proofs
Verifier’s concern: Is the argument correct?
PCPs – refereeing (even by amateurs) in a jiffy!
Major application – approximation algorithms

Presenter Notes
Presentation Notes
Example – capturing ALL claimsTwo scenarios – there are moreI’ll cheat in bothZK – requires interaction with prover.Requires one-way functionsBoth impossible without randomizationVery deep theorems, developed over a decade each



Remarkable properties of 
Probabilistic Proof Systems

claim:  The Riemann Hypothesis
Prover:  (argument)
Verifier: (editor/referee/amateur)

Zero-Knowledge Proofs
Prover’s concern: Will Verifier publish first?
ZK-proofs: argument reveals only correctness!
Major application - cryptography
Assumes: Factoring is HARD

Presenter Notes
Presentation Notes
Example – capturing ALL claimsTwo scenarios – there are moreI’ll cheat in bothZK – requires interaction with prover.Requires one-way functionsBoth impossible without randomizationVery deep theorems, developed over a decade each



Conclusions & Problems
When resources are limited, basic notions get new meanings 
(randomness, learning, knowledge, proof, …).

Randomness is in the eye of the beholder.
Hardness can generate (good enough) randomness.
Probabilistic algs seem very powerful but probably are not.
Sometimes this can be proven! (Small space algs,Primality)
Randomness is essential in some settings.

Is Factoring HARD? Is electronic commerce secure?
Is 3-COLOR HARD? Is P≠NP? Can creativity be automated?

Presenter Notes
Presentation Notes
Major assumption about independence and unbiasedIn det algs correctness is guaranteed – here it is not.There can be error – we can be unluckyWhat is the rationale for tolerating error?99.999..%Input errors, programming errors, hardward failures, gamma  radiation…



Fast Information Acquisition

Theorem: With probability >99%
% in population = % in sample ± 5%
inependent of population size

Population: 250 million, voting black or red

Random
Sample: 3,000

Presenter Notes
Presentation Notes
3000 sample points are independent
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